US009274169B2

a2 United States Patent

Lingannagari et al.

US 9,274,169 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54) ASYNCHRONOUS PROGRAMMABLE
JTAG-BASED INTERFACE TO DEBUG ANY
SYSTEM-ON-CHIP STATES, POWER MODES,
RESETS, CLOCKS, AND COMPLEX DIGITAL
LOGIC

(75) Inventors: Hanmanth Lingannagari, Folsom, CA

(US); Vasan Karighattam, Davis, CA
(US)
(73) INTEL CORPORATION, Santa Clara,
CA (US)

Assignee:

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 107 days.

1) 13/997,235

(22)

Appl. No.:

PCT Filed: Mar. 25,2012

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/US2012/030495

Mar. 11, 2014

(87) PCT Pub. No.: WO02013/147730

PCT Pub. Date: Oct. 3, 2013

Prior Publication Data

US 2014/0181605 Al Jun. 26, 2014

(65)

Int. Cl1.
GOIR 3128
GOIR 31317

(51)
(2006.01)
(2006.01)

(Continued)

(52) US.CL

CPC ... GOIR 313177 (2013.01); GOIR 31/2815
(2013.01); GOIR 31/3172 (2013.01);

(Continued)

(58) Field of Classification Search
CPC ... GO1R 31/2815; GOI1R 31/3172; GOIR
31/3177; GOIR 31/318555; GO1R 31/318572;
GOG6F 11/267; GO6F 11/2733; GOGF 11/3656
USPC oot 714/727, 25,729, 733
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,094,729 A * 7/2000 Mann GOG6F 11/348
714/25
6,142,683 A * 11/2000 Madduri GOG6F 11/348
703/23
(Continued)
FOREIGN PATENT DOCUMENTS
WO 2013/147730 A1 10/2013

OTHER PUBLICATIONS
Akselrod et al., Platform Independent Debug Port Controller Archi-
tecture with Security Protection for Multi-Processor System-on-
Chip ICs, 2006, EDAA, pp. 1-6.*

(Continued)

Primary Examiner — John J Tabone, Ir.
(74) Attorney, Agent, or Firm — Carrie A Boone, PC

(57) ABSTRACT

An asynchronous debug interface is disclosed that allows
TAG agents, JTAG-based debuggers, firmware, and software
to debug, access, and override any functional registers, inter-
rupt registers, power/clock gating enables, etc., of core logic
being tested. The asynchronous debug interface works at a
wide range of clock frequencies and allows read and write
transactions to take place on a side channel, as well as within
the on chip processor fabric without switching into a debug or
test mode. The asynchronous debug interface works with
two-wire and four-wire JTAG controller configurations, and
is compliant with IEEE standards, such as 1149.1, 1149.7,
etc., and provides an efficient and seamless way to debug
complex system-on-chip states and system-on-chip products.

20 Claims, 10 Drawing Sheets

JTAG debugger (250)

test suite
(450}

i lookup table i

(550)

. TAP controller (600}

JTAG
interface

270

asynchronous debug interface (100)

read interface (ZOD)I

write ln(erfﬂCe(”mH priority arbiter (400) {

intelligence unit (350)

test suite
(450)

| i lookup table

(550)

260 JTAG
side-channel access interface

270

core logic {500}
host CPU (220)

CPU(s) (240)

< OCP bus (230) >

US 9,274,169 B2
Page 2

(51) Int.CL
GOIR 31/3185
GOGF 11267
GOGF 11273
GOGF 11/36
GOIR 3173177
USS. CL

CPC oo

(52)

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

GOIR31/318555 (2013.01); GOIR

31/318572 (2013.01); GO6F 11/267 (2013.01);
GO6F 11/2733 (2013.01); GO6F 11/3656

(56)

References Cited

U.S. PATENT DOCUMENTS

6,145,100 A * 11/2000
6,154,856 A * 11/2000
6,189,140 B1* 2/2001
6,779,145 B1* 8/2004

7,284,174 B2 10/2007

(2013.01)
Madduri GOGF 11/3632
713/400
Madduri GOGF 11/348
712/227
Madduri GOGF 11/348
712/227
Edwards GOGF 11/3636
324/73.1

Dubey

7,428,661 B2 9/2008 Michael
7,844,867 B1* 112010 Reddyc.coe.. G11C 29/16
714/718
7,886,150 B2* 2/2011 Stollon GO1R 31/31719
713/169
7,900,110 B2 3/2011 Whetsel
2001/0037479 Al* 11/2001 Whetsel GOIR 31/318572
714/724
2001/0037480 Al* 11/2001 Whetsel GOIR 31/3172
714/727
2004/0210797 Al 10/2004 Kimelman et al.
2011/0066907 Al* 3/2011 Whetsel GOIR 31/3177
714/733
OTHER PUBLICATIONS

Banerjee et al., Secure Scan Design Using Redundant Scan Register,
2011, Proc. of Int. Conf. on Advances in Computer Science, pp.
66-71.*

International Search Report and Written Opinion received for PCT
Patent Application No. PCT/US2012/030495, mailed on Nov. 28,
2012, 9 pages.

International Preliminary Report on Patentability and Written Opin-
ion received for PCT Patent Application No. PCT/US2012/030495,
mailed on Oct. 9, 2014, 6 pages.

* cited by examiner

US 9,274,169 B2

Sheet 1 of 10

Mar. 1, 2016

U.S. Patent

{0£2) sng 00

!

(ovz) (8)NdD

!

(0Z2) NdD 180y

(00g) 2160] 8102

~4 aoellel
02| ovir

~1 SSB00E [BUUBRYD-BPIS

 (0gg)
i a|qe} dmyjoo

i (osw)

{(0Gg) un aausbysul

gUNg jsa}

(00p) Jenaue Auoud

{(00g) @oepeul BJLUM

(007) eoepe peal

{oo1) sveusiut Bngep snouciysulse

7 aoeLIBIuU
04e QviLr

(009) 4911013U0D dYL

(0s8)

s|ge; dmjog|

e s ot s

(0gz) 1ebbngep ovir

(ost) ;

a)Ins 188}

| @inbi4

US 9,274,169 B2

Sheet 2 of 10

Mar. 1, 2016

U.S. Patent

00Z

00l «

1841

SH.L

y ¥

(009) J2jj04ju0d
uod ssaooe 159]

L0

(012) 181siBal uoionnsul

'

MOL

Ly

(ot /) 18pooap uoonisuUl

{0g,2) sisisiBal piEp 183
eUIaIe oloads-ubisap

(0eL) 1eps1Bai Qf

3

(0z) 1o1s1Bai ssedAg

w

—
=]

1. 1oL

AH0LL

J

™
voi

<L
o
<
.

mooﬂH

{00g) o1Bo| 8100

208 T

)_cievice outputs erl
I T I R B |

L
<
P
e

I N
sindul aoiasp

aods T
e

4091

Ll
O
e
P

Z ainbi

US 9,274,169 B2

Sheet 3 of 10

Mar. 1, 2016

U.S. Patent

device outputs

7

4 4 4 4

> OdL
SINL
HOL
el ¥ F e e _QF
 — (009) v \ -
1 (NO0Y) dV L e 18]|0Jju0d | (9009) dVL |e— 1 (V009) dVL |
dv.L
Bat uononisu fat uoponysul Bai uogonsu
I __H_._r eeo ™ ..H._ M _..H“ m
m (N0OS) | Iumw” (8003) |__& m (v00S) |_fel | 8
T HNOAIO h oo H hy UNoo Hn 5
i h 2
[| . R | .} [] Lk & a
(00s) 0160| @100
¢ 8Inbi4

US 9,274,169 B2

Sheet 4 of 10

Mar. 1, 2016

U.S. Patent

& F Y
0 'L 0)
» yl-8jepdn A yg-arepdn
| }
-ZlIxe -ZIXa
, di-cl 0 ﬁ Ha-cH 0
Lw—‘ y !
Q dI-esned Q yq-asned
0 b 0 n
[H|-ixXe « [Ha-1xe 4
1 , i .
} 2
Q dIHys < Q Ha-Hys <
0 ro 0 .:O
ﬁ Yl-ainjdeo ﬁ yqg-ainydes
| l
%O O ﬁ i
ﬁ UBoS-3|-109|88 ﬂ UBosS-M(J-108les |¢ . 4 | |jpisel-uni
0

009 \‘

ﬁ 19s8.-0100}-159)

' eunBi4

US 9,274,169 B2

Sheet 5 of 10

Mar. 1, 2016

U.S. Patent

ulewop 310 Jeuonouny “ ulewop MoL Mmm‘_l_mwlvm@!@,&,_;
809
%00[0 [euoouny i Va1
m 202
: v09
o Slie) i 1o
B o m ~No N
(4engae Aioud o3) e < “ Au 0
josjes” pea) o d o a e D a€
A 105 b 108 108|893 peal 198
30¢ aoz . I G 04,1
i Ve
i v
w WL A3L
w 4o 5o
] 0 iS)
(Jongie Ajioud wol) paaiaoal) ” —> »>
elb peal ; a O a 0
i _\\ 188 \\\ 198
i 902 v0Z

\. G ainbi4
00C

US 9,274,169 B2

Sheet 6 of 10

Mar. 1, 2016

U.S. Patent

UIBWOP Y01 Bai s aum OvIr

a0/
b f———1a.l
o0%
e 5 1o V0. 5
< w |

UIBLLIOP 70 [BUOHOUNY

Bite) 43
) i)
(1eyque Ayioud o) 5 QA‘ o _m_A i .u
Josjes ajLM p= A s 300]08 ejIm 0 jos a H€
e aob “ L 04,1
| ¢
m S
“ N7 HOL
w Jjo 5 419 o
(1eyase Ajuoud woy peneosl) m > -
- ! a [@] a O
el aum “ s 195 7 188
i 90p Yoy

/] 9 2unBi-
00e

US 9,274,169 B2

Sheet 7 of 10

Mar. 1, 2016

U.S. Patent

welb aum
1o
welb peal

0oy

uoneligle
Aoud

108]98” 8llIM

108|198 pesl

J @inbi4

US 9,274,169 B2

Sheet 8 of 10

Mar. 1, 2016

U.S. Patent

000 jrUOIOUNY

g08
. i
R
Al \
D a
\.\. 198
005 0160] 00€ H b
2109 0] Jueib 4N 406
$S9008 SNQ 'd
00[0 [BUOIOUN
V08 HO0[0 | Houny
- 1o
19) Y06
T 7
0 a
suebe 188 \,
VL 0} jueld
$89008 SNq

00¢ 21Bo| 8100
woyj 1sanbal
$S9008 sNq

plep/ssalppe

g00t \\

245
jun sousbsiul
10009

18]joU0D VYL
uiol} 188nbal

$$8008 SN(q
elep/SSaippe

g aJnbi4

U.S. Patent Mar. 1, 2016 Sheet 9 of 10 US 9,274,169 B2

Figure 9 '/ 350

N_idle_cycles = (TCK/clk) * MCF (where the MCF muiltiplying factor is 4)

clock ratio | number of additional TCK clock TCK core logic frequency
(TCK/clk) |cycles theTAP controller needs to | frequency (clk)
be in idle state (N_idle_cycles) (MHz) {MHz)
0.2 1 50 200
0.4 2 50 125
0.67 3 75
1 4 50 50
1.25 5 50 40
1.67 7 50 30

6.67 27 20

US 9,274,169 B2

Sheet 10 of 10

Mar. 1, 2016

U.S. Patent

)

auop

3000 2160 8100 pue
19]]04IU0D dVL U0 pseseq
einuLiol Buisn uonelado

ajum Buipssoons
al0jeq saoho sip
spesul Jun souabijjeiul

pauuiopad Bulsq
sajm ajdinw
0

sNg 400 0} [suueyD apis
ybBnoiy; uoneiado ajum
sases|al Jagie Aoud

\‘
8Ll
&
s|ge|ieAR
shq 400
0
gLl
s|gejieae s shq 400
[Iun ajum jun asusbijjeul
- sploy JangJe Ajlonud
147" a

jauueyo apis ybnouy; 0160
2109 0} Uonelado alMm sajeluul
‘pajqeus si Bal |88 8lUM OV

\

pajeAljoe
s1 g)sibal eiEP 1S9) |RUIRIXS

\.I
oLl ,
uoIoNIISUI paulep-1asn
Upm JajsiBbal uononiisul
Speo| Jiun sousbijejul
e
801 ,
o1B0| 2109 ayj 0} a1UM 3l
-|eal B S3AJOAU 3}INS }$8]
-
901
18]j0Jju00 4y Buisn
o160} 2100 Uo a}InNs }$3)
—~ sun.i 1266ngsp oviIr
17401}
186Bngsp oL
ojul 8jge; dmyoo] pue ajns
A 188} speoj nun asuabijjajul
zol

001
0l @inbi4

US 9,274,169 B2

1
ASYNCHRONOUS PROGRAMMABLE
JTAG-BASED INTERFACE TO DEBUG ANY
SYSTEM-ON-CHIP STATES, POWER MODES,
RESETS, CLOCKS, AND COMPLEX DIGITAL
LOGIC

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of Patent Cooperation
Treaty patent application No. PCT/US2012/030495, filed on
Mar. 25,2012, which is incorporated herein by reference in its
entirety.

TECHNICAL FIELD

This application relates to the test equipment architecture
under the 1149 standard.

BACKGROUND

Joint Test Action Group (JTAG) is the common name for
what was later standardized as the IEEE 1149.1, “Standard
Test Access Port and Boundary-Scan Architecture”, where
IEEE is short for the Institute of Electrical and Electronics
Engineers. An IEEE 1149.7 standard is a complementary
standard to IEEE 1149.1, adding additional functionality.
JTAG was initially devised for testing printed circuit boards
using boundary scan and is still widely used for this applica-
tion.

The “boundary scan architecture” of IEEE 1149 uses a
5-pin serial protocol for setting and reading the values on pins
without directly accessing the core logic. A serial scan path
known as a boundary scan register (BSR) intercepts signals
between the core logic and the pins. When the system is not in
test mode, the boundary scan register connects the signals of
the core logic to the pins transparently. In test mode, the BSR
may be used to set and/or read values. In external mode, the
values set or read will be the values of the /O pads, also
known as ‘pins’. In internal mode, the values set or read will
be the values of the core logic.

The BSR is a shift register, which forms a path around the
core logic. Signal pins of the core logic of a system being
tested are connected to cells that make up the BSR, with these
cells surrounding the core logic (boundary). The shift register
is connected to the input and exit of test equipment, allowing
test vectors to be sent to the BSR, thus testing the core logic.

Despite this standardized approach, because the system
under test is in a “test mode”, some real-time scenarios are not
tested using the boundary scan architecture.

Thus, there is a continuing need for a mechanism for per-
forming real-time testing of core logic that overcomes the
shortcomings of the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this document will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein like reference
numerals refer to like parts throughout the various views,
unless otherwise specified.

FIG. 1 is a simplified block diagram of an asynchronous
debug interface, according to some embodiments;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a simplified block diagram of a boundary scan
architecture under IEEE 1149, including the core logic and
TAP controller of FIG. 1, according to some embodiments;

FIG. 3 is a block diagram of the boundary scan architecture
of FIG. 2 replicated for different chips that make up the core
logic of FIG. 1, according to some embodiments;

FIG. 4 is the state machine used by the TAP controller of
the asynchronous debug interface of FIG. 1, according to
some embodiments;

FIG. 5 is a schematic diagram of a read interface of the
asynchronous debug interface of FIG. 1, according to some
embodiments;

FIG. 6 is a schematic diagram of a write interface of the
asynchronous debug interface of FIG. 1, according to some
embodiments;

FIG. 7 is a schematic block diagram showing the connec-
tion between the read and write interfaces and the priority
arbiter ofthe asynchronous debug interface of FIG. 1, accord-
ing to some embodiments;

FIG. 8 is a schematic diagram of a priority arbiter, used by
the asynchronous debug interface of FIG. 1, according to
some embodiments;

FIG. 9 is a lookup table used by the software in the asyn-
chronous debug interface of FIG. 1 to manage idle states in
the TAP controller, according to some embodiments; and

FIG. 10 is a flow diagram showing a write operation being
performed by the asynchronous debug interface of FIG. 1,
according to some embodiments.

DETAILED DESCRIPTION

In accordance with the embodiments described herein, an
asynchronous debug interface is disclosed that allows JTAG
agents, JTAG-based debuggers, firmware, and software to
debug, access, and override any functional registers, interrupt
registers, power/clock gating enables, etc., of core logic being
tested. The asynchronous debug interface works at a wide
range of clock frequencies and allows read and write trans-
actions to, take place on a side channel, as well as within the
on-chip processor fabric without switching into a debug or
test mode. The asynchronous debug interface works with
two-wire and four-wire JTAG controller configurations, and
is compliant with IEEE standards, such as 1149.1, 1149.7,
etc., and provides an efficient and seamless way to debug
complex system-on-chip states and system-on-chip products.

In the following detailed description, reference is made to
the accompanying drawings, which show by way of illustra-
tion specific embodiments in which the subject matter
described herein may be practiced. However, it is to be under-
stood that other embodiments will become apparent to those
of ordinary skill in the art upon reading this disclosure. The
following detailed description is, therefore, not to be con-
strued in a limiting sense, as the scope of the subject matter is
defined by the claims.

A simplified block diagram of the asynchronous debug
interface 100 is depicted in FIG. 1, according to some
embodiments. The asynchronous debug interface 100 con-
sists of a read interface 200, a write interface 300, a priority
arbiter 400, and an intelligence unit 350. The asynchronous
debug interface 100 operates in real time on the core logic 500
in two ways: 1) through a side channel connection 260 to the
core logic, and 2) by utilizing a JTAG debugger 250 and TAP
controller 600 through a JTAG interface 250. The asynchro-
nous debug interface 100 is thus embedded into the JITAG
network (e.g., the JTAG debugger 250 and the one or more
TAP controllers 600).

US 9,274,169 B2

3

As used herein, the asynchronous debug interface 100 is
said to be running in real time when the core logic 500 being
tested operates in its normal state, that is, without any disrup-
tion in its operation. Thus, the asynchronous debug interface
100 operates without changing the speed of any clocks oper-
ating within the core logic 500, and without changing the
power being received by the core logic. Regarding the last
point, the core logic 500 is not put into a low-power operating
state when the asynchronous debug interface 100 is running
tests on the core logic in real time.

The JTAG debugger 250 and TAP, or test access port,
controller 600, are designed to operate under the IEEE 1149
standards, including, but not limited to, IEEE 1149.1 and
IEEE 1149.7 (known herein as the JTAG standard). While the
JTAG debugger 250 is capable of performing tests, on the
core, logic 500 while the core logic is in a test mode, the
asynchronous debug interface 100 operates on the core logic
500 in real time. The asynchronous debug interface 100 thus
exploits the capability of the JTAG debugger 250 and TAP
controller 600, but includes additional capability not supplied
by the JTAG debugger 250 to facilitate performing real-time
tests without disrupting the normal operation of the core logic
500.

The read interface 200 and write interface 300 of the asyn-
chronous debug interface 100 handle the protocols between
the TAP controller 600 and the core logic 500. The core logic
500 includes, at a minimum, a host CPU 220. In the simplified
representation of FIG. 1, the core logic 500 includes the host
CPU 220, and one or more additional CPUs 240, which are
coupled to the host by an open core protocol (OCP) bus 230.
For simplicity, other circuitry in the core logic 500 is not
featured in FIG. 1, but the core logic may include additional
functionality, including, but not limited to, networking capa-
bility, graphics and video capability, volatile and non-volatile
storage media, and peripheral device circuitry. The priority
arbiter 400 resolves conflicts between the JITAG debugger
250 and the host CPU 220 or other CPUs 240 of the core logic
500, when the two are simultaneously attempting to access
the OCP bus 230.

The intelligence unit 350 may consist of hardware logic
and/or a software program executed by a processor (not
shown). In some embodiments, the intelligence unit 350
includes a suite of tests 450 and a lookup table 550, which are
used in conjunction with the JTAG debugger 250 to test the
core logic 500.

In some embodiments, as described below, the intelligence
unit 350 includes the lookup table 550, which is sent to the
JTAG debugger 250. The lookup table 550 enables the JTAG
debugger 250 to obtain the number of clock cycles the TAP
controller 600 needs to be in the idle state while waiting, for
the bus access grant from the priority arbiter 400. In some
embodiments, the values, in the lookup table 550 are deter-
mined by anovel formula that employs the relative clock rates
of'the TAP controller 600 and the core logic 500 in determin-
ing the idle state clock cycles.

A conventional debug method is to put the system being
tested, also known as the system under test, into a particular
test, or debug mode, with a single clock at a fixed frequency
being used for both the system under test and the test logic. In
FIG.1, for example, the core logic 500 is the system under test
Under conventional debug, the core logic 500 is thus switched
between its functional mode, with the core logic operating as
designed, and a test mode, in which debugging operations are
performed. There are many disadvantages to this conven-
tional approach, one of which is that the core, logic operating
in the test mode does not faithfully represent the operation of
the core logic in real time.

10

25

30

40

45

55

4

By contrast, the asynchronous debug interface 100 has the
ability to debug or override any system-on-chip state or fea-
ture without putting the core logic 500 into a test mode. With
this interface, there is no need to slow down the phase-locked-
loop clocks of the core logic 500 for accessing any functional
logic within the core logic. The asynchronous debug interface
100 works at a wide range of JTAG as well as functional clock
frequencies and uses a unique hand-shaking mechanism and
asynchronous protocols to transfer data between the func-
tional and test clock domains. The asynchronous debug inter-
face 100 thus provides a powerful mechanism to, debug func-
tional logic in real time without any need for an expansive
on-chip logic analyzer.

Before describing the asynchronous debug interface fur-
ther, an introduction to the boundary scan architecture under
IEEE 1149 is appropriate. FIG. 2 shows a simplified sche-
matic diagram of an 1149-complaint system 700, according
to some embodiments, (The JTAG debugger 250 of FIG. 1 is
an example of an 1149-compliant system.) Surrounding the
corelogic 500 is a plurality of boundary scan cells 760A-760J
(collectively, “boundary scan cells 760”), which form a
boundary scan register (BSR), corresponding I/O pads 770 A-
770], plus an 1/O pad 770K receiving an input, test data in
(TDI), an instruction register 710 and instruction decoder
740, a bypass register 720, an 1D register 730, one or more,
design-specific external test data registers 750, and the test
access port controller, or TAP controller 600, first introduced
in FIG. 1. A TDI input feeds through the I/O pad 770K to the
first boundary scan cell 760A, passes through each succeed-
ing boundary scan cell 760B, 760C, . .., 760] to a test data out
(TDO) output.

Since there is only a single data input (TDI), the boundary
scan architecture of FIG. 2 is serial. The 1149-complaint
system 700 uses a test clock signal (TCK) to clock the data in,
a test mode state signal (TMS), and, optionally, a test reset
signal (TRST), as well as the TDI and TDO signals. The TAP
controller 600 is a state machine, with transitions being con-
trolled by the TMS signal. The state machine of the TAP
controller 600 is capable of doing a reset operation, accessing
an instruction register, and accessing data selected by the
instruction register. For each TCK pulse, one bit of data is
transferred into the TDI input and out of the TDO output.

During normal operation of the core logic 500, the bound-
ary scan cells 760 are invisible. The system 700 may be in one
of two test modes, an external test mode and an internal test
mode. In the external test mode, the boundary scan cells 760
are used to set and read values of the I/O pads 770. In the
internal test mode, the boundary scan cells 760 are used to set
and read the values of the core logic 500.

The JTAG standard envisions at least two test data regis-
ters, the boundary scan register 760 surrounding the core
logic 500 and the bypass register 720. Additionally, design-
specific test data registers may be included to enable design-
specific testing. These design-specific test data registers may
be publicly accessible, but are not required to be so. In some
embodiments, the test suite 450 programs the instruction
register 710 with a user-defined (custom) instruction when-
ever the asynchronous debug interface 100 is to be used.

The TAP controller 600 may consist of a single TAP con-
troller or multiple TAP controllers arranged in series with one
another. FIG. 3, for example, features the TAP controller 600
having N individual TAP controllers. Each of these individual
TAP controllers may be connected to a different circuit
(500A, 500B, . . ., 500N) inside the core logic 500. For
simplicity, the controller referred to herein as the “TAP con-
troller 600 may consist of a single TAP controller or multiple
TAP controllers.

US 9,274,169 B2

5

Returning to FIG. 2, several registers of the 1149-compli-
ant system 700 are shown as a set of shift-register-based
elements connected in parallel between the common serial
input (TDI) and the common serial output (TDO). The
instruction register 710 controls which register, the boundary
scan register 760, the device ID register 730, one of the
design-specific test data registers 750, or the bypass register
720, forms the serial path between TDI and TDO at any given
time. A multiplexer 790 controls the serial path between TDI
and TDO, although other devices may be used instead to
control the serial output.

The bypass register 720 provides a single-bit serial con-
nection through the circuit when none of the other test data
registers is selected. Because there may exist several TAP
controllers 600, each one connected in serial to a different test
circuit (FIG. 3), the bypass register 720 allows test data to
flow through a device to other components without affecting
the normal operation of the component. Thus, in FIG. 3,
where the circuit 500A is not being tested but the circuit 500B
is being tested, the bypass register 720 would be used with the
first circuit so that test data, in essence, bypasses the first
circuit entirely, and continues on to the second test circuit.
The boundary scan register 760 allows testing of board inter-
connections and detecting production defects such as opens
or shorts. The boundary scan register 760 also allows access
to the inputs and outputs of components when testing their
system logic or sampling of signals flowing through the sys-
tem inputs and outputs. The device identification register 730
is an optional test data register that allows the manufacturer,
part, number, and variant of a component to be determined.

FIG. 2 also shows design-specific test data registers 750.
One or more of these registers, which are optional under
1149.1 and 1149.7, allow access to design-specific test sup-
port features, such as self-tests, scan paths, etc. They may be
publicly available or wholly private, accessible only by fol-
lowing secure authentication, for example.

The design-specific test data registers are activated when
the instruction register 710 indicates a user-defined instruc-
tion. In some embodiments, the asynchronous debug inter-
face 100 interacts with these external test data registers 750.
Again, the user-defined instructions may be public or private,
based on the design requirements.

For example, as described above, a user-defined instruction
may be sent to the instruction register 710, (by one of the
programs in the test suite 450), causing a path to be created
between the serial input (TDI) and the output (TDO) by way
of a first external test data register 750. Thereafter, the data
and controls needed to perform system debug may be shifted
through the external test data register 750. The asynchronous
debug interface 100 reads the contents of the external test data
register 750 and performs the system debug of the core logic
500. Thus, the programming of the instruction register 710
with the user-defined (custom) instruction triggers the asyn-
chronous debug interface 100 to perform real-time testing of
the core logic 500.

In some embodiments, the debug results, obtained by the
asynchronous debug interface 100 may be loaded into the test
dataregister 750 when the TAP controller 600 is in a “capture-
DR” state, and may be shifted onto the output (TDO) during
the “shift-DR” state. FIG. 4 shows the state diagram for the
TAP controller 600, according to some embodiments. The
rightmost part of the state machine pertains to the instruction
register 710 (IR). This right side of the state machine 600 is
thus for configuring the one or more TAP controllers 600 to
perform a certain task by selecting one of the design-specific
test data registers 750 by way of the instruction register 710.
By loading the instruction register 710 with the user-defined

30

40

45

55

6

instruction, one of the external test data register 750 is acti-
vated, and receives instructions from the intelligence unit 350
of the asynchronous debug interface 100, where the instruc-
tions may consist of the test suite 450.

The JTAG debugger 250 thus essentially converts the test
suite 450 of the asynchronous debug interface 100 into the
serial test vectors that are sent through the test data input
(TDI) and TMS JTAG ports. Whenever real-time read or write
operations are to be performed, the test suite 450 programs
the user-defined custom instruction to the TAP controller 600.
This activates either the read interface 200 or the write inter-
face 300, and allows the reads and writes to occur through the
side channel 260. The read and write operations may include,
for example, overriding function registers within the core
logic 500, turning on a modem within the core logic, turning
off power to an audio block in the core logic, and so on.

The read and write interfaces 200, 300 of the asynchronous
debug interface 100 handle the protocols between the TAP
controller 600 and the core logic 500. Additionally, the pro-
grammable priority arbiter 400 is designed to resolve con-
flicts between the TAP controller 600 and the CPU(s) within
the core logic 500.

FIG. 5 is a schematic diagram of the read interface 200 of
the asynchronous debug interface 100, according to some
embodiments. Where the intelligence unit 350 is performing
real-time read operations of registers, memory locations, or
1/O pins of the core logic 500, the read interface 200 is used.
The read interface 200 uses the same test clock TCK that is
used by the TAP controller 600. Where conflict between reads
and writes occur, the priority arbiter 400 resolves them.

The simplified dr wing of the read interface 200 in FI1G. 5
splits the circuit into a TCK domain (left side) and a func-
tional clock domain (right side), with the TCK being the clock
used by the JTAG logic (JTAG debugger 250 and TAP con-
troller 600) and the functional clock being the operating clock
of'the core logic 500. The read interface 200 includes five D
flip-flops 20A-20E and two-to-one multiplexers (MUXes)
60A and 60B. Initially, the priority arbiter 400 ensures that the
OCP bus 230 is not being used before issuing the read grant,
shown in FIG. 5 as read_grant.

A JTAG read select register, JTAG_read_sel_reg, controls
the select line of the MUX 60B, which feeds an “always high”
input (1'61) through the MUX to the MUX 60A. The
JTAG_read_sel_regis set when the user-defined instruction is
sent to the instruction register 710 of the ITAG debugger 250.
The MUX 60A is controlled by the output from the D flip-flop
20A. Meanwhile, exiting the functional clock domain, the
read grant is fed into the D flip-flop 20B, is clocked through to
the D flip-flop 20A (using the test clock, TCK), which con-
trols the MUX 60A.

Since the MUX 60A has an always low input (1'560), the
input of the flip-flop 20C is fed to the Q output only after both
the JTAG_read_sel_reg is activated and the read_grant is
issued by the priority arbiter 400. This results in the read_se-
lect signal, which is clocked through two additional D flip-
flops 20D and 20E by the functional clock (e.g., that of the
corelogic 500). The operation of the read interface 200 is thus
complete.

FIG. 6 is a schematic diagram of the write interface 300 of
the asynchronous debug interface 100, according to some
embodiments. Where the intelligence unit 350 is performing
real-time write operations of registers, memory locations, or
1/O pins of the core logic 500, the write interface 300 is used.

As with the read interface 200, the simplified drawing of
the write interface 300 in FIG. 6 splits the circuit into a TCK
domain (left side) and a functional clock domain (right side).
The write interface 200 includes five D flip-flops 40A-40E

US 9,274,169 B2

7
and two-to-one multiplexers (MUXes) 70A and 70B. Ini-
tially, the priority arbiter 400 ensures that the OCP bus 230 is
not being used before issuing the write grant, shown in FIG.
6 as write_grant.

A JTAG write select register, JTAG_write_sel_reg, con-
trols the select line to the MUX 70B, which feeds an always
high input (1'61) through to the MUX 70A. The JTAG_
write_sel_reg is set when the user-defined instruction is sent
to the instruction register 710 of the JTAG debugger 250. The
MUX 70A is controlled by the output from the D flip-flop
40A. Meanwhile, exiting the functional clock domain, the
write grant is fed into the D flip-flop 40B, is clocked through
to the D flip-flop 40A (using the test clock, TCK), which
controls the MUX 70A.

Since the MUX 70A has an always low input (1'50), the
input of the D flip-flop 40C is fed to the Q output only after
both the JTAG_write_sel_reg is activated and the write_grant
is issued by the priority arbiter 400. This results in the
write_select signal, which is clocked through two additional
D flip-flops 40D and 40E by the functional clock (e.g., that of
the core logic 500). The operation of the write interface 300 is
thus complete.

FIG. 7 is a simplified diagram showing how the priority
arbiter 400 generates either the read_grant or write_grant
signal, after receiving the read_select or write_select signal.
The priority arbiter 400 is illustrated in FIG. 8, according to
some embodiments.

Where the core logic 500 and the intelligence unit 350 of
the asynchronous debug interface 100 are each requesting use
of the address/data bus (e.g., the OCP bus 230 that is part of
the core logic 500), the priority arbiter 400 resolves the con-
flict. In FIG. 8, the priority arbiter 400 consists of two D
flip-flops 80A, 80B, two AND gates 90A, 90B, and an inverter
92. Both of the C flip-flops 80A, 80B are controlled by the
functional (core, logic) clock.

Whenever a real-time read or write operation is to be per-
formed by the asynchronous debug interface 100, the intelli-
gence unit 350 requests access to the OCP bus 230 of the core
logic 500. When the request is clocked through the D flip-flop
80A, the Q result is the same as the D input, and is, thus fed
through the AND gate 90A, which is then inverted by the
inverter 92. The other input of the AND gate comes from the
request for bus access from the core logic 500.

Meanwhile, the core logic 500 may also be requesting
access to the OCP bus 230, as indicated in the lower part of the
circuit diagram. The request is clocked through the D flip-flop
80B by the functional clock, and is fed into the AND gate
90C, the other input of which comes from the JTAG agent
request (e.g., the TAP controller 600 or the intelligence unit
350 of the asynchronous debug interface 100) for bus access.

Recall from FIG. 1 that the intelligence unit 350 of the
asynchronous debug interface 100 includes a test suite 450
and a lookup table 550, in some embodiments, both of which
are loaded into the JTAG debugger 250 in performing tests on
the core logic 500. The test suite 450 is executed by the JTAG
debugger 250 or other JTAG agent and operates with the
JTAG-compliant TAP controller 600. Based on the data
received from the core logic 500, the asynchronous debug
interface 100 reads from and writes to the registers of the core
logic 500.

As its name suggests, the asynchronous, debug interface
100 operates asynchronously. The JTAG debugger 250 and
the core logic 500 are operating using difterent clocks. Thus,
in some embodiments, the asynchronous debug interface 100
uses the lookup table 550 to insert wait states during these
read and write operations.

15

25

40

45

50

8

FIG. 9 is the lookup table 550, as introduced in FIG. 1,
according to some embodiments, used by the asynchronous
debug interface 100. The lookup table 550 shows a small set,
of many possible frequency combinations between the test
clock TCK used by the TAP controller 600 and a functional
clock used by the core logic 500. The lookup table 550 also
summarizes the number of additional TCK clock cycles the
TAP controller 600 needs to be parked in the idle state
between each read and write transaction to allow the host
CPU to handle the side-channel 260 transactions properly. As
used herein, side-channel transactions refer to any transaction
between the asynchronous debug interface 100 and the host
CPU 220 in the core logic 500, not involving the JTAG inter-
face 270. The host CPU 220, in turn, communicates with one
or more additional processors (shown as CPU 240) over the
OCP bus 230 to perform transactions.

In some embodiments, the lookup table 550 uses the fol-
lowing formula in calculating the number of TAP controller
idle cycles:

N_idle_cycles=(TCK/clk)*MCF

where TCK is the clock for the TAP controller 600, clk is
the clock for the core logic 500, and MCF is a multiplying
clock factor. In the lookup table 550, MCF is four. The MCF
is a constant that is based on the design of the core logic 500.
The MCF may change depending on various factors, such as
the number of TAP controllers in the multiple-TAP JTAG
network, the frequency of the core logic clock, the latency of
the side-channel 260 data path, and other operating condi-
tions and design considerations.

Suppose the core logic 500 clock, clk, is operating at 100
MHz. As indicated in the lookup table 550, the test clock,
TCK, may operate at either 50 MHz (blue) or at 20 MHz
(vellow). Where the test clock operates at S0 MHz (blue), the
number of idle cycles needed for the TAP controller 600 is:

N_idle_cycles=(TCK/clk)*MCF=50/100*4=}4%4=2

Thus, when the test clock operates at 50 MHz and the core
logic clock operates at 100 MHz, the TAP controller 600
would be parked in an idle state for two clock cycles between
each read and, write transaction.

Where the test clock operates at 20 MHz (yellow), the
number of idle cycles needed for the TAP controller 600 is:

1
N_idle cycles = (TCK/clk) * MCF = 20/100%4 = 3 «4 =038

In this case, the 0.8 value is rounded up to a 1. Thus, when
the test clock is operating at 20 MHz and the core logic clock
operates at 100 MHz, the TAP controller 600 would be parked
in an idle state for a single clock cycle between each read and
write transaction.

The number of idle states goes up significantly when there
is a significant disparity between the test clock TCK rate and
the core logic clk rate. For example, where the core logic 500
operates at 1 MHz and the TAP controller 600 operates at 50
MHz (pink), the number of idle cycles needed for the TAP
controller 600 is:

N_idle_cycles=(TCK/clk)*MCF=50/1*4=50*4=200

Thus, when the test clock is operating at 50 MHz and the
core logic clock is at 1 MHz, the TAP controller 600 would be
parked in an idle state for two-hundred clock cycles between
each read and write transaction.

Where instead the core logic 500 operates at 1 MHz and the
TAP controller 600 operates at 20 MHz (green), the number
of'idle cycles needed for the TAP controller 600 is:

N_idle_cycles=(TCK/clk)*MCF=20/1*4=20*4=80

US 9,274,169 B2

9

Thus, when the test clock is operating at 20 MHz and the
core logic is at 1 MHz, the TAP controller 600 would be
parked in an idle state for eighty clock cycle between each
read and write transaction.

Because the core logic 500 may operate at different clack
frequencies, the intelligence unit 350 of the asynchronous
debug interface 100 uses the lookup table 550 to determine
how many idle states to insert between each read transaction
and each write transaction. The state machine shown in FIG.
4 allows these idle states to be introduced by sending zeros to
the TAP controller 600. As long as the TAP controller receives
zeros, the state machine will remain in the run-test/idle state.

FIG. 10 is a flow diagram showing how multiple write
operation are performed by the asynchronous debug interface
100, according to some embodiments. The intelligence, unit
350 loads the test suite 450 and the lookup table 550 into the
JTAG debugger 250 (block 102). Using the TAP controller
600, the boundary scan register 760, and the JTAG interface
270, the JTAG debugger 250 runs one or more tests in the test
suite 450 on the core logic 500.

Recall that the JTAG debugger 250 operates in either an
external test mode, in which the boundary scan cells 760 are
used to set and read values ofthe [/O pads 770, and an internal
test mode, in which the boundary scan cells 760 are used to set
and read the values of the core logic 500. In this case, how-
ever, the asynchronous debug interface 100 operates in real
time. Thus, during the execution of the test suite 450, there is
bound to be a read operation from the core logic 500 or a write
operation to the core logic that may result in conflict with
operations taking place inside the core logic.

When, for example, a real-time write operation is to take
place (block 106), the intelligence unit 350 loads a user-
defined instruction into the JTAG debugger 250 (block 108).
Recall that when a user-defined instruction is sent to the
instruction register 710, this causes a path between the serial
input (TDI) and the serial output (TDO) by way of one of the
external test data registers 750. Thus, the external test data
register 750 is activated (block 110). Based on the custom
instruction in the JTAG instruction register 710 and the con-
tents of the external test data register 750, the intelligence unit
350 ofthe asynchronous debug interface 100 derives the write
request and stores it in the register, JTAG_ write_sel_reg,
where this register drives the select line of the MUX 70B
(FIG. 6). Similarly, where the external test data register 750
contains a read request, the intelligence unit 350 of the asyn-
chronous debug interface 100 derives the read request and
stores it in the register, JTAG_read_sel_reg, where this reg-
ister drives the select line of the MUX 60B (FIG. 5).

Once the external test data register 750 is activated, the
intelligence unit 350 uses the write interface 300 to perform a
write operation on a register, memory location, or I/O port of
the core logic 500 (block 112). Because this is happening in
real time, the priority arbiter 400 holds the write initiated by
the intelligence unit 350 until the OCP bus 230 is available
(block 114). Once the OCP bus is available (block 116), the
priority arbiter 400 releases the write operation through the
side-channel access 260 to the OCP bus (block 118). Because
the JTAG debugger 250 does not consider real-time opera-
tions, the intelligence unit 350 instead uses the write interface
300, as described above to perform the write operation to the
core logic 500.

Where multiple write operations are being performed
(block 120), the intelligence unit 350 triggers the JTAG
debugger 250 and TAP controller 300 to insert idle cycles
between succeeding write operations (block 122). Thus, the
TAP controller 600 remains in the run-test/idle state (for the
number of cycles as determined by the lookup table 550)

10

15

20

25

30

35

40

45

50

55

60

10
while the read/write operations are performed on the core
logic 500 through the side channel 260.

Since the JTAG debugger 250 and TAP controller 300
operate using the test clock and the core logic 500 operates
using the functional clock, the idle cycles enable the test suite
450 to perform operations on the core logic without disrupt-
ing its normal operation, thus enabling the asynchronous
debug interface 100 to obtain a higher quality of test results.
In ether words, the test results reflect the real-time operation
of'the core logic 500.

The asynchronous debug interface 100 thus allows JTAG
agents and firmware or software to debug the functional logic
of'a system without any dependency on the expansive on-chip
probing logic and provides an efficient and seamless way to
debug complex system-on-chip states and system-on-chip-
based products.

While the application has been described with respect to a
limited number of embodiments, those skilled in the art will
appreciate numerous modifications and variations therefrom.
It is intended that the appended claims cover all such modi-
fications and variations as fall within the true spirit and scope
of the invention.

We claim:

1. A system to asynchronously debug a core logic, the core
logic comprising a central processing unit, a bus, and a func-
tional clock, the system comprising:

an intelligence unit comprising a test program executed by
a joint test action group-compliant (JTAG compliant)
debugger, the JTAG compliant debugger to operate with
a JTAG-compliant test access port (TAP) controller
using a test clock, the test program to be run on the core
logic through a JTAG interface in real time;

a read interface to read from a register, a memory location,
or an input/output (I/O) port of the core logic through a
side channel;

a write interface to write to the register, the memory loca-
tion, or the I/O port of the core logic through the side
channel; and

a priority arbiter to arbitrate between access to the bus of
the core logic by either the intelligence unit or circuitry
within the core logic;

wherein a predetermined number of idle states is sent to the
core logic by the test program using the JTAG interface in
between succeeding write operations to or read operations
from the register, the memory location, or the /O port of the
core logic, wherein the succeeding write operations to or read
operations from are taking place through the side channel.

2. The system of claim 1, wherein the predetermined num-
ber of idle states is based on the functional clock frequency
and the test clock frequency.

3. The system of claim 2, wherein the predetermined num-
ber of idle states is calculated using the following formula:

N_idle_cycles=(TCK/clk)*MCF

wherein TCK is the test clock frequency, clk is the func-
tional lock frequency, and MCF is a multiplying factor.
4. The system of claim 3, wherein the multiplying factor is
based on the number of TAP controllers, the functional clock
frequency, and the latency of a data path between the core
logic and the TAP controller.
5. The system of claim 3, wherein the multiplying factor is
four.
6. The system of claim 1, the intelligence unit further
comprising:
a lookup table comprising:
a plurality of frequencies for the functional clock;
a plurality of frequencies for the test clock; and

US 9,274,169 B2

11

anumber ofidle states, based on the functional clock and
test clock frequencies;
wherein the test program:

obtains the predetermined number of idle states from the

lookup table; and
sends the predetermined number to the TAP controller.
7. The system of claim 1, wherein the predetermined num-
ber comprises the number of run-state/idle states between an
instruction register of the TAP controller and a data register.
8. The system of claim 1, wherein the TAP controller
comprises N distinct TAP controller units, with each TAP
controller unit being coupled to a different circuit within the
core logic.
9. A method to asynchronously debug a core logic, the core
logic comprising a central processing unit, a bus, and a func-
tional clock, the method comprising:
executing, by an intelligence unit, a test program on a joint
test action group (JTAG) debugger in conjunction with a
JTAG test action port (TAP) controller using a test clock,
the test program to be run on the core logic through a
JTAG interface in real time;

sending, by the test program, a user-defined instruction to
the JTAG debugger, wherein the user-defined instruction
causes a write select register to be enabled in a write
interface;
initiating, by the test program, a first write operation to the
core logic, the first write operation to occur through a
side channel between the write interface and the core
logic, wherein the JTAG debugger and JTAG TAP con-
troller are not part of the side-channel transaction;

sending, by the intelligence unit, a predetermined number
of idle states to the core logic, wherein the intelligence
unit uses the JTAG debugger, the TAP controller, and the
JTAG interface to send the idle states to the core logic;
and

initiating, by the intelligence unit, a second write operation

to the core logic, wherein the second write operation is
sent through the side channel.

10. The method of claim 9, further comprising:

interrupting, by a priority arbiter, the first write operation

initiated by the intelligence unit, wherein the bus is
being used by circuitry of the core logic.

11. The method of claim 10, further comprising:

allowing, by the priority arbiter, the first write operation to

be sent to the core logic using the side channel.

12. The method of claim 9, further comprising:

obtaining the predetermined number from lookup table

10

15

20

25

30

35

40

45

loaded into the JTAG debugger by the intelligence unit. 50

13. The method of claim 9, further comprising:

calculating the predetermined number based on a fre-
quency, of the functional clock frequency and a second
frequency of the test clock.

12

14. The method of claim 9, further comprising:
calculating the predetermined number based on the follow-
ing formula:
N_idle_cycles=(TCK/clk)*MCF

wherein TCK is a frequency of the test clock, clk is a fre-
quency of the functional clock, and MCF is a multiplying
factor.
15. A method to asynchronously debug a core logic, the
core logic comprising a central processing unit, a bus, and a
functional clock, the method comprising:
executing, by an intelligence unit, a test program on a joint
test action group (JTAG) debugger in conjunction with a
JTAG test action port (TAP) controller using a test clock,
the test program to be run on the core logic through a
JTAG interface in real time;

sending, by the test program, a user-defined instruction to
the JTAG debugger, wherein the user-defined instruction
causes a read select register to be enabled in a read
interface;
initiating, by the test program, a first read operation from
the core logic, the first read operation to occur through a
side channel between the read interface and the core
logic, wherein the JTAG debugger and JTAG TAP con-
troller are not part of the side-channel transaction;

sending, by the intelligence unit, a predetermined number
of idle states to the core logic, wherein the intelligence
unit uses the JTAG debugger, the TAP controller, and the
JTAG interface to send the idle states to the core logic;
and

initiating, by the intelligence unit, a second read operation

from the core logic, wherein the second read operation is
sent through the side channel.

16. The method of claim 15, further comprising:

interrupting, by a priority arbiter, the first read operation

initiated by the intelligence unit, wherein the bus is
being used by circuitry of the core logic.

17. The method of claim 16, further comprising:

allowing, by the priority arbiter, the first read operation to

be sent to the core logic using the side channel.

18. The method of claim 15, further comprising:

obtaining the predetermined number from a lookup table

loaded into the JTAG debugger by the intelligence unit.

19. The method of claim 15, further comprising:

calculating the predetermined number based on a fre-

quency of the functional clock frequency and a second
frequency of the test clock.

20. The method of claim 15, further comprising:

calculating the predetermined number based on the follow-

ing formula:

N_idle_cycles=(TCK/clk)*MCF
wherein TCK is a frequency of the test clock, clk is a fre-

quency of the functional clock, and MCF is a multiplying
factor.

